- 2011 FORMULA 1 GULF AIR BAHRAIN GRAND PRIX (Sakhir) 11 - 13 Mar
- 2011 FORMULA 1 QANTAS AUSTRALIAN GRAND PRIX (Melbourne) 25 - 27 Mar
- 2011 FORMULA 1 PETRONAS MALAYSIA GRAND PRIX (Kuala Lumpur) 08 - 10 Apr
- 2011 FORMULA 1 UBS CHINESE GRAND PRIX (Shanghai) * 15 - 17 Apr
- 2011 FORMULA 1 TURKISH GRAND PRIX (Istanbul) 06 - 08 May
- FORMULA 1 GRAN PREMIO DE ESPAÑA 2011 (Catalunya) 20 - 22 May
- FORMULA 1 GRAND PRIX DE MONACO 2011 (Monte Carlo) 27 - 29 May
- FORMULA 1 GRAND PRIX DU CANADA 2011 (Montreal) 10 - 12 Jun
- 2011 FORMULA 1 GRAND PRIX OF EUROPE (Valencia) 24 - 26 Jun
- 2011 FORMULA 1 SANTANDER BRITISH GRAND PRIX (Silverstone) 08 - 10 Jul
- FORMULA 1 GROSSER PREIS SANTANDER VON DEUTSCHLAND 2011 (Nürburgring) 22 - 24 Jul
- FORMULA 1 ENI MAGYAR NAGYDÍJ 2011 (Budapest) 29 - 31 Jul
- 2011 FORMULA 1 BELGIAN GRAND PRIX (Spa-Francorchamps) 26 - 28 Aug
- FORMULA 1 GRAN PREMIO SANTANDER D'ITALIA 2011 (Monza) 09 - 11 Sep
- 2011 FORMULA 1 SINGAPORE GRAND PRIX (Singapore) 23 - 25 Sep
- 2011 FORMULA 1 JAPANESE GRAND PRIX (Suzuka) 07 - 09 Oct
- 2011 FORMULA 1 KOREAN GRAND PRIX (Yeongam) 14 - 16 Oct
- 2011 FORMULA 1 GRAND PRIX OF INDIA (New Delhi) * 28 - 30 Oct
- 2011 FORMULA 1 ETIHAD AIRWAYS ABU DHABI GRAND PRIX (Yas Marina Circuit) 11 - 13 Nov
- FORMULA 1 GRANDE PRÊMIO DO BRASIL 2011 (Sao Paulo) 25 - 27 Nov
28 Nov 2010
2011 FIA Formula One World Championship Race Calendar
By
Krizna Praztya
0
Comments
Formula 1's Aerodynamics System
By
Krizna Praztya
A modern Formula One car has almost as much in common with a jet fighter as it does with an ordinary road car. Aerodynamics have become key to success in the sport and teams spend tens of millions of dollars on research and development in the field each year.
The aerodynamic designer has two primary concerns: the creation of downforce, to help push the car's tyres onto the track and improve cornering forces; and minimising the drag that gets caused by turbulence and acts to slow the car down.
Several teams started to experiment with the now familiar wings in the late 1960s. Race car wings operate on exactly the same principle as aircraft wings, only in reverse. Air flows at different speeds over the two sides of the wing (by having to travel different distances over its contours) and this creates a difference in pressure, a physical rule known as Bernoulli's Principle. As this pressure tries to balance, the wing tries to move in the direction of the low pressure. Planes use their wings to create lift, race cars use theirs to create downforce. A modern Formula One car is capable of developing 3.5 g lateral cornering force (three and a half times its own weight) thanks to aerodynamic downforce. That means that, theoretically, at high speeds they could drive upside down.
Early experiments with movable wings and high mountings led to some spectacular accidents, and for the 1970 season regulations were introduced to limit the size and location of wings. Evolved over time, those rules still hold largely true today.
By the mid 1970s 'ground effect' downforce had been discovered. Lotus engineers found out that the entire car could be made to act like a wing by the creation of a giant wing on its underside which would help to suck it to the road. The ultimate example of this thinking was the Brabham BT46B, designed by Gordon Murray, which actually used a cooling fan to extract air from the skirted area under the car, creating enormous downforce. After technical challenges from other teams it was withdrawn after a single race. And rule changes followed to limit the benefits of 'ground effects' - firstly a ban on the skirts used to contain the low pressure area, later a requirement for a 'stepped floor'.
Despite the full-sized wind tunnels and vast computing power used by the aerodynamic departments of most teams, the fundamental principles of Formula One aerodynamics still apply: to create the maximum amount of downforce for the minimal amount of drag. The primary wings mounted front and rear are fitted with different profiles depending on the downforce requirements of a particular track. Tight, slow circuits like Monaco require very aggressive wing profiles - you will see that cars run two separate 'blades' of 'elements' on the rear wings (two is the maximum permitted). In contrast, high-speed circuits like Monza see the cars stripped of as much wing as possible, to reduce drag and increase speed on the long straights.
Every single surface of a modern Formula One car, from the shape of the suspension links to that of the driver's helmet - has its aerodynamic effects considered. Disrupted air, where the flow 'separates' from the body, creates turbulence which creates drag - which slows the car down. Look at a recent car and you will see that almost as much effort has been spent reducing drag as increasing downforce - from the vertical end-plates fitted to wings to prevent vortices forming to the diffuser plates mounted low at the back, which help to re-equalise pressure of the faster-flowing air that has passed under the car and would otherwise create a low-pressure 'balloon' dragging at the back. Despite this, designers can't make their cars too 'slippery', as a good supply of airflow has to be ensured to help dissipate the vast amounts of heat produced by a modern Formula One engine.
In recent years most Formula One teams have tried to emulate Ferrari's 'narrow waist' design, where the rear of the car is made as narrow and low as possible. This reduces drag and maximises the amount of air available to the rear wing. The 'barge boards' fitted to the sides of cars also helped to shape the flow of the air and minimise the amount of turbulence.
Revised regulations introduced in 2005 forced the aerodynamicists to be even more ingenious. In a bid to cut speeds, the FIA robbed the cars of a chunk of downforce by raising the front wing, bringing the rear wing forward and modifying the rear diffuser profile. The designers quickly clawed back much of the loss, with a variety of intricate and novel solutions such as the ‘horn’ winglets first seen on the McLaren MP4-20.
Most of those innovations were effectively outlawed under even more stringent aero regulations imposed by the FIA for 2009. The changes were designed to promote overtaking by making it easier for a car to closely follow another. The new rules took the cars into another new era, with lower and wider front wings, taller and narrower rear wings, and generally much ‘cleaner’ bodywork. Perhaps the most interesting change, however, was the introduction of ‘moveable aerodynamics’, with the driver able to make limited adjustments to the front wing from the cockpit during a race.
The aerodynamic designer has two primary concerns: the creation of downforce, to help push the car's tyres onto the track and improve cornering forces; and minimising the drag that gets caused by turbulence and acts to slow the car down.
Several teams started to experiment with the now familiar wings in the late 1960s. Race car wings operate on exactly the same principle as aircraft wings, only in reverse. Air flows at different speeds over the two sides of the wing (by having to travel different distances over its contours) and this creates a difference in pressure, a physical rule known as Bernoulli's Principle. As this pressure tries to balance, the wing tries to move in the direction of the low pressure. Planes use their wings to create lift, race cars use theirs to create downforce. A modern Formula One car is capable of developing 3.5 g lateral cornering force (three and a half times its own weight) thanks to aerodynamic downforce. That means that, theoretically, at high speeds they could drive upside down.
Early experiments with movable wings and high mountings led to some spectacular accidents, and for the 1970 season regulations were introduced to limit the size and location of wings. Evolved over time, those rules still hold largely true today.
By the mid 1970s 'ground effect' downforce had been discovered. Lotus engineers found out that the entire car could be made to act like a wing by the creation of a giant wing on its underside which would help to suck it to the road. The ultimate example of this thinking was the Brabham BT46B, designed by Gordon Murray, which actually used a cooling fan to extract air from the skirted area under the car, creating enormous downforce. After technical challenges from other teams it was withdrawn after a single race. And rule changes followed to limit the benefits of 'ground effects' - firstly a ban on the skirts used to contain the low pressure area, later a requirement for a 'stepped floor'.
Despite the full-sized wind tunnels and vast computing power used by the aerodynamic departments of most teams, the fundamental principles of Formula One aerodynamics still apply: to create the maximum amount of downforce for the minimal amount of drag. The primary wings mounted front and rear are fitted with different profiles depending on the downforce requirements of a particular track. Tight, slow circuits like Monaco require very aggressive wing profiles - you will see that cars run two separate 'blades' of 'elements' on the rear wings (two is the maximum permitted). In contrast, high-speed circuits like Monza see the cars stripped of as much wing as possible, to reduce drag and increase speed on the long straights.
Every single surface of a modern Formula One car, from the shape of the suspension links to that of the driver's helmet - has its aerodynamic effects considered. Disrupted air, where the flow 'separates' from the body, creates turbulence which creates drag - which slows the car down. Look at a recent car and you will see that almost as much effort has been spent reducing drag as increasing downforce - from the vertical end-plates fitted to wings to prevent vortices forming to the diffuser plates mounted low at the back, which help to re-equalise pressure of the faster-flowing air that has passed under the car and would otherwise create a low-pressure 'balloon' dragging at the back. Despite this, designers can't make their cars too 'slippery', as a good supply of airflow has to be ensured to help dissipate the vast amounts of heat produced by a modern Formula One engine.
In recent years most Formula One teams have tried to emulate Ferrari's 'narrow waist' design, where the rear of the car is made as narrow and low as possible. This reduces drag and maximises the amount of air available to the rear wing. The 'barge boards' fitted to the sides of cars also helped to shape the flow of the air and minimise the amount of turbulence.
Revised regulations introduced in 2005 forced the aerodynamicists to be even more ingenious. In a bid to cut speeds, the FIA robbed the cars of a chunk of downforce by raising the front wing, bringing the rear wing forward and modifying the rear diffuser profile. The designers quickly clawed back much of the loss, with a variety of intricate and novel solutions such as the ‘horn’ winglets first seen on the McLaren MP4-20.
Most of those innovations were effectively outlawed under even more stringent aero regulations imposed by the FIA for 2009. The changes were designed to promote overtaking by making it easier for a car to closely follow another. The new rules took the cars into another new era, with lower and wider front wings, taller and narrower rear wings, and generally much ‘cleaner’ bodywork. Perhaps the most interesting change, however, was the introduction of ‘moveable aerodynamics’, with the driver able to make limited adjustments to the front wing from the cockpit during a race.
Formula 1's Engine and Gearbox
By
Krizna Praztya
The engine and transmission of a modern Formula One car are some of the most highly stressed pieces of machinery on the planet, and the competition to have the most power on the grid is still intense.
Traditionally, the development of racing engines has always held to the dictum of the great automotive engineer Ferdinand Porsche that the perfect race car crosses the finish line in first place and then falls to pieces. Although this is no longer strictly true - regulations now require engines to last more than one race weekend - designing modern Formula One engines remains a balancing act between the power that can be extracted and the need for just enough durability.
Engine power outputs in Formula One racing are also a fascinating insight into how far the sport has moved on. In the 1950s Formula One cars were managing specific power outputs of around 100 bhp / litre (about what a modern 'performance' road car can manage now). That figure rose steadily until the arrival of the 'turbo age' of 1.5 litre turbo engines, some of which were producing anything up to 750 bhp / litre. Then, once the sport returned to normal aspiration in 1989 that figure fell back, before steadily rising again. The 'power battle' of the last few years saw outputs creep back towards the 1000 bhp barrier, some teams producing more than 300 bhp / litre in 2005, the final year of 3 litre V10 engines. Since 2006, the regulations have required the use of 2.4 litre V8 engines, with power outputs falling around 20 percent.
Revving to a limited 18,000 RPM, a modern Formula One engine will consume a phenomenal 650 litres of air every second, with race fuel consumption typically around the 75 l/100 km (4 mpg) mark. Revving at such massive speeds equates to an accelerative force on the pistons of nearly 9000 times gravity. Unsurprisingly, engine-related failures remain one of the most common causes of retirements in races.
Modern Formula One engines owe little except their fundamental design of cylinders, pistons and valves to road-car engines. The engine is a stressed component within the car, bolting to the carbon fibre 'tub' and having the transmission and rear suspension bolted to it in turn. Therefore it has to be enormously strong. A conflicting demand is that it should be light, compact and with its mass in as low a position as possible, to help lower the car's centre of gravity and to enable the height of rear bodywork to be minimised.
The gearboxes of modern Formula One cars are now highly automated with drivers selecting gears via paddles fitted behind the steering wheel. The 'sequential' gearboxes used are very similar in principle to those of motorbikes, allowing gear changes to be made far faster than with the traditional ‘H’ gate selector, with the gearbox selectors operated electrically. Despite such high levels of technology, fully automatic transmission systems, and gearbox-related wizardry such as launch control, are illegal - a measure designed to keep costs down and place more emphasis on driver skill. Transmissions - most teams run seven-speed units - bolt directly to the back of the engine.
Mindful of the massive cost of these ultra high-tech powertrains, the FIA introduced new regulations in 2005 limiting each car to one engine per two Grand Prix weekends, with 10-place grid penalties for those breaking the rule. From 2008, a similar policy was applied to gearboxes, each having to last four race weekends. 2009 saw the introduction of even more stringent engine rules, with drivers limited to eight engines per season. On top of these measures, a freeze on engine development imposed at the end of the 2006 season means teams are unable to alter the fundamentals of their engines’ design.
Traditionally, the development of racing engines has always held to the dictum of the great automotive engineer Ferdinand Porsche that the perfect race car crosses the finish line in first place and then falls to pieces. Although this is no longer strictly true - regulations now require engines to last more than one race weekend - designing modern Formula One engines remains a balancing act between the power that can be extracted and the need for just enough durability.
Engine power outputs in Formula One racing are also a fascinating insight into how far the sport has moved on. In the 1950s Formula One cars were managing specific power outputs of around 100 bhp / litre (about what a modern 'performance' road car can manage now). That figure rose steadily until the arrival of the 'turbo age' of 1.5 litre turbo engines, some of which were producing anything up to 750 bhp / litre. Then, once the sport returned to normal aspiration in 1989 that figure fell back, before steadily rising again. The 'power battle' of the last few years saw outputs creep back towards the 1000 bhp barrier, some teams producing more than 300 bhp / litre in 2005, the final year of 3 litre V10 engines. Since 2006, the regulations have required the use of 2.4 litre V8 engines, with power outputs falling around 20 percent.
Revving to a limited 18,000 RPM, a modern Formula One engine will consume a phenomenal 650 litres of air every second, with race fuel consumption typically around the 75 l/100 km (4 mpg) mark. Revving at such massive speeds equates to an accelerative force on the pistons of nearly 9000 times gravity. Unsurprisingly, engine-related failures remain one of the most common causes of retirements in races.
Modern Formula One engines owe little except their fundamental design of cylinders, pistons and valves to road-car engines. The engine is a stressed component within the car, bolting to the carbon fibre 'tub' and having the transmission and rear suspension bolted to it in turn. Therefore it has to be enormously strong. A conflicting demand is that it should be light, compact and with its mass in as low a position as possible, to help lower the car's centre of gravity and to enable the height of rear bodywork to be minimised.
The gearboxes of modern Formula One cars are now highly automated with drivers selecting gears via paddles fitted behind the steering wheel. The 'sequential' gearboxes used are very similar in principle to those of motorbikes, allowing gear changes to be made far faster than with the traditional ‘H’ gate selector, with the gearbox selectors operated electrically. Despite such high levels of technology, fully automatic transmission systems, and gearbox-related wizardry such as launch control, are illegal - a measure designed to keep costs down and place more emphasis on driver skill. Transmissions - most teams run seven-speed units - bolt directly to the back of the engine.
Mindful of the massive cost of these ultra high-tech powertrains, the FIA introduced new regulations in 2005 limiting each car to one engine per two Grand Prix weekends, with 10-place grid penalties for those breaking the rule. From 2008, a similar policy was applied to gearboxes, each having to last four race weekends. 2009 saw the introduction of even more stringent engine rules, with drivers limited to eight engines per season. On top of these measures, a freeze on engine development imposed at the end of the 2006 season means teams are unable to alter the fundamentals of their engines’ design.
Kinetic Energy Recovery Systems (KERS)
By
Krizna Praztya
What is KERS?
The acronym KERS stands for Kinetic Energy Recovery System. The device recovers the kinetic energy that is present in the waste heat created by the car’s braking process. It stores that energy and converts it into power that can be called upon to boost acceleration.
How does it work?
There are principally two types of system - battery (electrical) and flywheel (mechanical). Electrical systems use a motor-generator incorporated in the car’s transmission which converts mechanical energy into electrical energy and vice versa. Once the energy has been harnessed, it is stored in a battery and released when required.
Mechanical systems capture braking energy and use it to turn a small flywheel which can spin at up to 80,000 rpm. When extra power is required, the flywheel is connected to the car’s rear wheels. In contrast to an electrical KERS, the mechanical energy doesn’t change state and is therefore more efficient.
There is one other option available - hydraulic KERS, where braking energy is used to accumulate hydraulic pressure which is then sent to the wheels when required.
Do the regulations place limitations on the use of KERS?
Currently the regulations permit the systems to convey a maximum of 60kw (approximately 80bhp), while the storage capacity is limited to 400 kilojoules. This means that the 80bhp is available for anything up to 6.67s per laps, which can be released either all in one go, or at different points around the circuit. Lap time benefits range from approximately 0.1 to 0.4s.
How is the stored energy be released by the driver?
The regulations stipulate that the release must be completely under the driver’s control. There is a boost button on the steering wheel which can be pressed by the driver.
Why was KERS introduced?
The aims are twofold. Firstly to promote the development of environmentally friendly and road car-relevant technologies in Formula One racing; and secondly to aid overtaking. A chasing driver can use his boost button to help him pass the car in front, while the leading driver can use his boost button to escape. In line with the regulations, there are limits on the device’s use and therefore tactics - when and where to use the KERS energy - come into play.
Is a car running KERS heavier than one which is not running the system?
No. A typical KERS system weighs around 35 kilograms. Formula One cars must weigh at least 620kg (including the driver), but traditionally teams build the car to be considerably lighter and then use up 70kg of ballast to bring it up to weight. This means that teams with KERS have less ballast to move around the car and hence have less freedom to vary their car’s weight distribution. Heavier drivers are at a particular disadvantage, an issue addressed by the raising of the minimum car weight by 15kg for the 2010 season.
Do teams have to use it?
The use of KERS is not compulsory. In fact, for 2010 a gentlemen's agreement means no team is using it, though that does not mean it may not return in the future.
The acronym KERS stands for Kinetic Energy Recovery System. The device recovers the kinetic energy that is present in the waste heat created by the car’s braking process. It stores that energy and converts it into power that can be called upon to boost acceleration.
How does it work?
There are principally two types of system - battery (electrical) and flywheel (mechanical). Electrical systems use a motor-generator incorporated in the car’s transmission which converts mechanical energy into electrical energy and vice versa. Once the energy has been harnessed, it is stored in a battery and released when required.
Mechanical systems capture braking energy and use it to turn a small flywheel which can spin at up to 80,000 rpm. When extra power is required, the flywheel is connected to the car’s rear wheels. In contrast to an electrical KERS, the mechanical energy doesn’t change state and is therefore more efficient.
There is one other option available - hydraulic KERS, where braking energy is used to accumulate hydraulic pressure which is then sent to the wheels when required.
Do the regulations place limitations on the use of KERS?
Currently the regulations permit the systems to convey a maximum of 60kw (approximately 80bhp), while the storage capacity is limited to 400 kilojoules. This means that the 80bhp is available for anything up to 6.67s per laps, which can be released either all in one go, or at different points around the circuit. Lap time benefits range from approximately 0.1 to 0.4s.
How is the stored energy be released by the driver?
The regulations stipulate that the release must be completely under the driver’s control. There is a boost button on the steering wheel which can be pressed by the driver.
Why was KERS introduced?
The aims are twofold. Firstly to promote the development of environmentally friendly and road car-relevant technologies in Formula One racing; and secondly to aid overtaking. A chasing driver can use his boost button to help him pass the car in front, while the leading driver can use his boost button to escape. In line with the regulations, there are limits on the device’s use and therefore tactics - when and where to use the KERS energy - come into play.
Is a car running KERS heavier than one which is not running the system?
No. A typical KERS system weighs around 35 kilograms. Formula One cars must weigh at least 620kg (including the driver), but traditionally teams build the car to be considerably lighter and then use up 70kg of ballast to bring it up to weight. This means that teams with KERS have less ballast to move around the car and hence have less freedom to vary their car’s weight distribution. Heavier drivers are at a particular disadvantage, an issue addressed by the raising of the minimum car weight by 15kg for the 2010 season.
Do teams have to use it?
The use of KERS is not compulsory. In fact, for 2010 a gentlemen's agreement means no team is using it, though that does not mean it may not return in the future.
Aku Cinta Kamu dalam 100 Bahasa
By
Krizna Praztya
Udah bosen dengan kata-kata Aku Cinta Kamu, I Love You, Aishiteru, Ich Liebe Dich atau Wo Ai Ni? Atau mungkin udah terlalu sering kita mendengar atau bahkan mengucapkan kata-kata di atas untuk mengungkapkan perasaan kita ke pasangan? Biar gak bosen, atau pengen tampil beda, simak nih ungkapan cinta dalam 100 bahasa, baik bahasa nasional maupun bahasa daerah dari seluruh dunia. Artinya semua sama, Aku Cinta Kamu.
Pilih salah satu atau salah dua atau salah semua deh, buat mengungkapkan cintamu ke pasangan. Dijamin lebih berkesan.
Aku Cinta Kamu dalam 100 Bahasa
Pilih salah satu atau salah dua atau salah semua deh, buat mengungkapkan cintamu ke pasangan. Dijamin lebih berkesan.
Aku Cinta Kamu dalam 100 Bahasa
Afrika | : Ek het jou life |
Albanian | : Te dua |
Arabic | : Ana behibak (Untuk cowok) |
Arabic | : Ana behibek (Untuk cewek) |
Armenian | : Yes kez sirumen |
Bambara | : M’bi fe |
Bangle | : Aamee tuma ke bhalobashi |
Belarusian | : Ya tabe kahayu |
Bisaya | : Nahigugma ako kanimo |
Bulgarian | : Obicham te |
Cambodian | : Soro lahn nhee ah |
Chinese | : Ngo oiy ney a |
Catalan | : T’estimo |
Cheyenne | : Ne monotatse |
Chicewa | : Ndimakukonda |
Corsican | : Ti tengu caru (untuk cowok) |
Creol | : Mi aime jou |
Croatian | : Volim te |
Czech | : Miluji te |
Danish | : Jeg elsker dig |
Dutch | : Ik hou van jou |
English | : I love you |
Esperanto | : Mi amas vin |
Estonian | : Ma armastan sind |
Ethiopian | : Afgreki |
Faroese | : Eg elski teg |
Farsi | : Doset daram |
Filipino | : Mahal kita |
Finnish | : Mina rakastan sinua |
French | : Je t’aime, Je t’adore |
Gaelic | : Ta gra agam ort |
Georgian | : Mikvarhar |
German | : Ich liebe dich |
Greek | : S’agapo |
Gujarati | : Hoo thunay prem karoo choo |
Hiligaynon | : Palangga ko ikaw |
Hawaiian | : Aloha wau ia oi |
Hebrew | : Ani ohev et otha |
Hiligaynon | : Guina higugma ko ikaw |
Hindi | : Hum tumhe pyar karte hae |
Hmong | : Kuv hlub koj |
Hopi | : Nu’umi unangwa’ta |
Hungarian | : Szeretlek |
Icelandic | : Eg elska tig |
Inuit | : Negligevapse |
Irish | : Taim I’ ngra leat |
Italian | : Ti amo |
Japanese | : Aishiteru |
Kannada | : Naanu ninna preetisuttene |
Kapampangan | : Kaluguran daka |
Kiswahili | : Nakupenda |
Konkani | : Tu magel moga cho |
Korean | : Sarang heyo |
Latin | : Te amo |
Latvian | : Es tevi miilu |
Lebanese | : Bahibak |
Lithuanian | : Tave myliu |
Malay | : Saya cintakan mu |
Malayalam | : Njam ninne premikunnu |
Mandarin | : Wo ai ni |
Marathi | : Me tula prem karto |
Mohawk | : Kanbhik |
Moroccan | : Ana moajaba bik |
Nahuatl | : Ni mits neki |
Navajo | : Ayor anosh’ni |
Norwegian | : Jeg elsker deg |
Pandacan | : Syota na kita |
Pangasina | : Inaru taka |
Papiamento | : Mi ta stimabo |
Persian | : Doo-set daaram |
Pig Latin | : Lay ovlay ouyay |
Polish | : Kocham ciebie |
Portuguese | : Eu te amo |
Romanian | : Te iubesc |
Russian | : Ya tebya liubliu |
Scot Gaelic | : Tha gra’dh agam ort |
Serbian | : Volim te |
Setswana | : Ke a go rata |
Sindhi | : Maa tokhe pyar kendo ahyan |
Sioux | : Techihhila |
Slovak | : Lu’bim ta |
Slovenian | : Ljubim te |
Spanish | : Te quiero / Te amo |
Swahili | : Ninapenda wewe |
Swedish | : Jag alskar dig |
Swiss | : Ich liebe di |
Taiwanese | : Wag a ei li |
Tahitian | : Ua here vau ia oe |
Tamil | : Nan unnai kathalikaraen |
Telugu | : Nenu ninnu premistunnanu |
Thai | : Chan rak khun (untuk cowok) |
Thai | : Phom rak khun (untuk cewek) |
Turkish | : Seni seviyorum |
Ukrainian | : Ya tebe kahayu |
Urdu | : Mai aap say pyaar karta hoo |
Vietnamese | : Anh ye^u em (untuk cewek) |
Vietnamese | : Em ye^u anh (untuk cowok) |
Welsh | : ‘Rwy’n dy garu |
Yiddish | : Ikh hob dikh |
Yoruba | : Mo ni fe |
27 Nov 2010
Bagaimana Sebuah Bus Dibuat?
By
Krizna Praztya
PADA dasarnya bus adalah sebuah moda transortasi massal yang unik. Dalam mendesain bodi sebuah bus, industri karoseri yang bagus selalu memperhatikan aspek penting yang disebut hard point. Yakni, ketentuan umum yang mutlak harus dipenuhi. Apa saja?
Pertama, chassis unit meliputi posisi mesin, gril, katup udara hisap, sistem kemudi, tangki bahan bakar bagasi, panel kontrol unit elektronik atau ECU dan lain-lain. Komponen-komponen yang disebut tadi dibuat langsung oleh Agen Tunggal Pemegang Merek (ATPM) atau pabrikan sasis dan mesin bus. Jika karoseri melakukan perubahan, harus ada uji landasan atau rekomendasi bahkan sertifikat.
Kedua, dimensi keseluruhan kendaraan. Untuk urusan satu ini karoseri harus mengikuti ketentuan yang berlaku sesuai regulasi dan masing-masing shasis mempunyai perbedaan tipe standar ukuran yang disesuaikan sehingga diperoleh standarisasi produk.
Ketiga, regulasi Pemerintah yang mengatur konfigurasi tempat duduk, jumlah pintu, penghilangan pintu sopir, pintu darurat, jumlah pintu penumpang dan lain-lain. Di Indonesia aturan ini ditentukan oleh Departemen Perhubungan.
Keempat, teknis body builder. Yaitu, adanya alat dan proses yang sudah dirancang untuk industri pembuatan bus itu sendiri (body builder/karoseri). Semakin baik proses dan maju teknologi sebuah industri karoseri maka bisa meningkatkan kualitas output produk, selain faktor man power dan man hour.
Spesifikasi yang Diminta
Setelah hard point sebagai ketentuan utama sudah terdefinisi, yang harus ditentukan kemudian adalah spesifikasi teknis dari bus itu sendiri akan dibuat seperti apa, berfungsi apa dan mempunyai karakter apa? Spesifikasi atau ketentuan tersebut merupakan perpaduan yang sifatnya kompromistis antara kebutuhan customer, pabrikan, ATPM, distributor, suplier dan lain-lain. Spesifikasi yang Diminta itu meliputi jenis atau model atau desain eksterior dan interior bus, fungsi teknis operasional, aspek ergonomi atau kenyamanan pengguna dan operator. Selain itu, aspek ini juga mencakup cara pemecahan jika muncul masalah, serta solusi dalam mencapai sasaran desain yang diinginkan. Hal lainnya yang perlu diperhatian adalah keunggulan produk tersebut dibandingkan dengan kompetitor Ini merupakan target puncak dari suatu produk yang akan memberikan nilai tambah produk tersebut baik bagi operator bus sebagai konsumen maupun pabrikan karoseri sebagai pembuatnya. Selain itu juga perlu memperhatikan suplai material dan aksesoris yang dibutuhkan karena tidak semua komponen tersebut tersedia lengkap di pasar.
Desain grafis
Ini merupakan bagian sentuhan akhir untuk nilai tambah bagi sebuah bus yang dibuat oleh karoseri. Identitas produk atau brand identity menjadi salah satu pembeda dari para kompetitor sekaligus membentuk identitas golongan pengguna produk tersebut agar mudah dikenali tampilannya oleh masyarakat dan konsumen. Aspek tampilan di sini mencakup kolaborasi aspek visual dua dan tiga dimensi.
Evaluasi terus-menerus
Langkah terakhir dari proses perancangan sebuah produk adalah evalusi berkesinambungan
sebagai proses terus menerus untuk meminimalkan munculnya masalah dan memaksimalkan nilai plus untuk proses mendatang. Salah satunya dengan perbandingan produk tersebut dengan produk pesaing sekelasnya atau pada beberapa tingkatan produk dalam jajaran line up-nya.
sebagai proses terus menerus untuk meminimalkan munculnya masalah dan memaksimalkan nilai plus untuk proses mendatang. Salah satunya dengan perbandingan produk tersebut dengan produk pesaing sekelasnya atau pada beberapa tingkatan produk dalam jajaran line up-nya.
Omah Mlaku CyberBus
By
Krizna Praztya
Cyberbus adalah bus yang mempunyai fasilitas multimedia mobile (internet) berkecepatan tinggi dan fasilitas kenyamanan selayaknya rumah. Cyber bus adalah bus umum berjenis Recretional Vehicle. Recretional vehicle merupakan sebuah kendaraan bermotor beroda yang digunakan untuk berkemah atau kegiatan rekreasi lainnya. Pencipta kendaraan ini adalah Perusahaan Oto bus (PO) Nusantara yang bekerja sama dengan PT. Indosat dengan nilai investasi sebesar Rp 4 Miliar.Pertama kali diperkenalkan pada tanggal 20 Mei 2008.
Sejarah
Pada tahun 2003 muncul ide dari penciptanya, Handoyo Budijanto untuk membuat bus dengan fasilitas canggih dan nyaman. Handoyo Budijanto adalah pemilik perusahaan oto bus Nusantara yang berpusat di Kudus. Alasan timbulnya ide ini adalah kurangnya perkembangan bus di indonesia dan tertinggal dari negara lain. Perkembangan bus di Indonesia hanya berkembang pada jenis bus antar kota, antar provinsi dan pariwisata. Bus dengan jenis Recretional Vehicle belum terdapat di indonesia.
Pada tahun 2005 Handoyo Budijanto melakukan pencarian untuk mesin terbaik. Pencarian berakhir pada perusahaan Volvo, sebuah industri kendaraan bermotor di Swedia. Tahun 2005 akhir bus masuk ke koraseri pembuatan badan bus di Adiputro Malang. Tahun 2008 bus selesai.
Saat pertama bus difungsikan sebagai bus pribadi Handoyo Budijanto untuk kebutuhan rekreasi keluarga dan memudahkan koordinasi serta memantau operasional 300 unit armada bus. Tetapi pada bulan Februari bus difungsikan sebagai bus umum yang dapat di sewa. Diperkenalkan secara umum sejak 20 Mei 2008 melalui ajang road show ke sejumlah lokasi wisata. Pada bulan November 2008 Cyber bus mengikuti Indonesia Consumunity Expo (ICE) 2008 di Plaza Utara Gelora Bung Karno. Dari Indonesia Consumunity Expo (ICE) 2008, nama cyber bus menjadi terkenal dan menciptakan fenomena baru di bidang transportasi di Indonesia.
Dimensi dan mesin bus
Bus ini memiliki ukuran panjang dan tinggi 12 x 3 meter dengan cat berwarna coklat keemasan dan lekukan strip warna putih. Tampilan kaca depan bus memiliki ukuran yang lebih besar dan lebih tinggi. Posisi body sangat rendah dan dekat dengan tanah. Suspensi yang digunakan adalah suspensi udara yang pasti nyaman. sistem suspensi udara atau air suspension terdiri dari kompresor, tabung udara, selang-selang dan suspensinya berbentuk balon karet atau tabung silinder.
Mesin yang digunakan adalah mesin Volvo tipe B12M 12.000 cc dengan desain horisontal. Mesin dipasang pada bagain tengah bus. Pemasangan mesin di tengah bus difungsikan untuk mendapatkan tingkat keamanan yang tinggi dengan distribusi bobot yang merata, bagasi yang lebih luas, tingkat kebisingan yang rendah dan untuk mencapai tingkat emisi yang rendah. Tipe mesin tersedia untuk varian 340, 380, dan 420 Horse Power atau tenaga kuda dengan standar emisi Euro 3. Euro 3 merupakan standar emisi yang dapat mengurangi polusi hidrokarbon dan karbon monoksida.
Model Bus yang digunakan adalah model Setra Selendang Royal Coach SE buatan Koraseri Bus Adiputro. Desain bus menggunakan perangkat elektronik tingkat tinggi yang membuat interval perawatan lebih lama dan bebas dari biaya pelumasan di beberapa tuas antar sambungan bagian. Ada 2 pilihan kapasitas tangki bahan bakar dari 300 hingga 700 liter.
Spesifikasi teknis
- Tipe: VOLVO B 12 M
- Jarak Sumbu Roda: 6.200 mm
- Panjang Keseluruhan: 10.007 mm
- Tinggi Keseluruhan Rangka: 866 mm
- Lebar Keseluruhan: 2.471 mm
- GVW: 19.000 Kg
- Jenis Mesin : Mid-mounted, 6 silinder diesel turbo intercooler, injeksi langsung elektronik
- Daya Mesin : 420 HP di 1.800 rpm
- Kapasitas : 12.100 cc
- Torsi Maksimal : 2.000 Nm di 1.200 rpm
- Transmisi : 7 kecepatan maju dan 1 kecepatan mundur
- Suspensi : Electronically Controlled Suspension with air bellow suspension and shock absorbers
- Alternator : 3 x 110 A
- Batere: Flash 24 V - 2 x N 150 A
- Kemudi : Power steering jenis ball & nut dengan servo unit. Tuas dilengkapi high & tilt steering
- Rem Kaki : Volvo drum brakes air system with ABS
- Rem Parkir : Aktuasi pegas tabung rem pada tromol roda belakang
- Kapasitas Tangki : 450 liter (3 x 150 liter)
- Ban : 6 buah Ban Michelin XZE 295/80/R 22,5
- Kelas emisi: Euro3, EEV (varian tertentu)
- Exhaust : Stainless steel exhaust system with SCR catalytic converter
Fungsi dan tujuan
Para eksekutif dan pelaku bisnis yang sering melakukan perjalanan ke luar kota adalah target pemasaran bus ini. Tujuan pembuatan adalah untuk memberikan kenyamanan kepada masyarakat umum yang menggunakannya untuk tetap dapat bekerja dan terhubung dengan kantor secara online walaupun sedang dalam perjalanan jauh, seperti ke luar kota. Salah satu fungsinya adalah memudahkan melakukan pengambilan dan pemindahan data perusahaan dengan aplikasi server internal perusahaan. Selain untuk keperluan perkantoran, juga dapat difungsikan sebagai rumah berjalan dengan berbagai fasilitas rumah yang menawan.
Fasilitas Kantor dan multimedia mobile
Bus dilengkapi dengan ruang meeting dan akses multimedia mobile berkecepatan tinggi. Teknologi yang digunakan menggunakan teknologi HSDPA (High Speed Downlink Packet Access) yang memberikan layanan data dan internet dengan kecepatan hingga 3,6 Mpbs. Terdapat fasilitas komunikasi lainnya yang terdiri dari telepon dan faksimile, video conference VPN ( Virtual Private Network ), internet melalui Indosat Broadband 3,5G dan GPRS(General Packet Radio Service), tambahan fasilitas dilengkapi pula dengan akses email dan data menggunakan exchange server maupun POP3(Post Office Protocol version 3).
- Internet dengan kecepatan hingga 3,6 Mpbs
- Telepon
- Faksimile
- Video conference
Fasilitas rumah yang dimiliki
- 2 TV: LCD 32" , 2 TV: LCD 20", dan Kamera CCTV
- Home theatre, karaoke, DVD, VCD dan Playstation 2
- Kursi Pijat Elektrik, Sofa Panjang, meja dan Sofa Putar
- 1 Set Meja Kursi Makan
- Dapur Kering dengan Alat Pemanggang, Kulkas, Alat Pembuat Kopi
- Tempat Tidur Susun dan Kamar Mandi
Kelemahan
- Keterbatasan teknologi multimedia
Produk teknologi multimedia yang dimiliki oleh cyber bus tidak sempurna. Pada lokasi tertentu kekuatan akses yang dimiliki tidaklah sebesar yang dikatakan, terutama di daerah perbukitan atau gunung serta daerah terpencil.
- Terbatasnya daerah tujuan
Hanya dapat melayani perjalanan yang ada di Pulau Jawa saja.
- Harga sewa
Harga sewa yang mahal mencapai Rp. 6 juta per 18 jam.
Yamaha Jupiter MX: Total Baru
By
Krizna Praztya
Kalau sebelumnya dikabarkan bahwa Yamaha akan meluncurkan Jupiter MX facelift, ternyata begitu dilihat langsung oleh Kompas.com, bebek sport ini berubah total. Tidak hanya seluruh bodi, tetapi perubahan total juga dilakukan pada mesin.
Kendati demikian, dimensi Jupiter MX sekarang masih dipertahankan. Begitu juga kapasitas, diameter dan langkah, serta perbandingan kompresi mesin.
Dengan perubahan desain mesin dan teknologi pembuatan piston dan materi permukaan silinder, hasilnya, efisiensi sepeda motor berkapasitas 135 cc ini menjadi lebih baik. Tenaga mesin All-New MX lebih besar sedikit kendati diperoleh pada putaran yang sama (lihat tabel).
Secara keseluruhan, penampilan All-New Jupiter MX lebih sporty dan kekar. Kini, roda belakang dilengkapi dengan sepatbor yang berada di bawah rangka belakang. Pada panel instrumen, ada perubahan pada kunci kontak. Yang menjadi perubahan mencolok, kini MX menggunakan dua rem cakram, yaitu di depan dan di belakang.
Selain mengamati detail perubahan pada bodi dan mesin, Kompas.com juga sempat mencicipi sepeda motor ini. Performa mesin baru mengalami perubahan karena kini, MX menggunakan kopling manual dan transmisi 5-percepatan. Tali gas MX baru ini juga dibuat ganda agar bisa memperoleh respons spontan ketika dibetot cepat. Perubahan lainnya adalah ukuran ban pelek belakang yang lebih lebar.
Sepeda motor yang diluncurkan pada 25 November mendatang ini, kendati berubah total, tetapi harganya tidak banyak mengalami kenaikan. “Diperkirakan sekitar Rp 500.000,” ujar Indra Dwi Sunda, Manajer Promosi PT Yamaha Motor Kencana Indonesia (YMKI). Saat ini Jupiter MX dijual Rp 15,475 juta (on the road, Jakarta dan sekitarnya).
Spesifikasi Jupiter MX Sekarang vs All-New:
Sumber : Harian kompas
Kendati demikian, dimensi Jupiter MX sekarang masih dipertahankan. Begitu juga kapasitas, diameter dan langkah, serta perbandingan kompresi mesin.
Dengan perubahan desain mesin dan teknologi pembuatan piston dan materi permukaan silinder, hasilnya, efisiensi sepeda motor berkapasitas 135 cc ini menjadi lebih baik. Tenaga mesin All-New MX lebih besar sedikit kendati diperoleh pada putaran yang sama (lihat tabel).
Secara keseluruhan, penampilan All-New Jupiter MX lebih sporty dan kekar. Kini, roda belakang dilengkapi dengan sepatbor yang berada di bawah rangka belakang. Pada panel instrumen, ada perubahan pada kunci kontak. Yang menjadi perubahan mencolok, kini MX menggunakan dua rem cakram, yaitu di depan dan di belakang.
Selain mengamati detail perubahan pada bodi dan mesin, Kompas.com juga sempat mencicipi sepeda motor ini. Performa mesin baru mengalami perubahan karena kini, MX menggunakan kopling manual dan transmisi 5-percepatan. Tali gas MX baru ini juga dibuat ganda agar bisa memperoleh respons spontan ketika dibetot cepat. Perubahan lainnya adalah ukuran ban pelek belakang yang lebih lebar.
Sepeda motor yang diluncurkan pada 25 November mendatang ini, kendati berubah total, tetapi harganya tidak banyak mengalami kenaikan. “Diperkirakan sekitar Rp 500.000,” ujar Indra Dwi Sunda, Manajer Promosi PT Yamaha Motor Kencana Indonesia (YMKI). Saat ini Jupiter MX dijual Rp 15,475 juta (on the road, Jakarta dan sekitarnya).
Spesifikasi Jupiter MX Sekarang vs All-New:
Item | Jupiter MX Sekarang (55S) | All-New Jupiter MX (50C) |
Dimensi (mm) | ||
Panjang | 1.960 | 1.960 |
Lebar | 695 | 695 |
Tinggi | 1.080 | 1.080 |
Jarak sumbu roda | 1.255 | 1.255 |
Berat (kg) | 111 | 116 |
Kapasi tangki bensin | 4 liter | 4 liter |
Mesin | ||
Tipe | 4-langkah, 4-katup, SOHC, Berpendingin cairan | 4 -langkah, 4-katup SOHC, Berpendingin cairan |
Jumlah silinder | Tunggal Tegak | Tunggal Tegak |
kapasitas | 134 ,4 cc | 134,4 cc |
Diameter x langkah | 54,0 x 58,7 mm | 54,0 x 58,7 mm |
Perbandingan kompresi | 10,9 : 1 | 10,9 : 1 |
Tenaga maks. kW (PS) @rpm | 8,93 (12.14) @8.500 | 9,21 (12.52) @8500 |
Torsi maks. Nm (kgf.m) @rpm | 11,79 (1,20) @6.000 | 12,14 (1,24) @6.000 |
Sistem starter | Elektrik & Kick | Elektrik & Kick |
Kopling | Basah | Basah |
Kapasitas oli mesin | Total 1,15 liter Ganti reguler: 0,94 liter | Total 1,15 liter Ganti reguler : 0,94 liter |
Pasokan bahan bakar | Karburator BS25 -58 | Karburator BS25-58 |
Kopling | Basah, sentrifugal, multiplat | Basah, manual, multiplat |
Transmisi | Rotary, 4-kecepatan | Return, 5-kececepatan |
Pola perpindahan gigi | N-1-2-3-4-N | 1-N-2-3-4-5 |
Rangka | ||
Tipe | Diamond | Diamond |
Garpu depan | Teleskopik | Teleskopik |
Suspensi belakang | Lengan ayun, Monocross | Lengan ayun, Monocross |
Ukuran ban depan | 70/90-17M/C 38P | 70/90-17M/C 38P |
Ukuran ban belakang | 80/90-17M/C 44P | 100/70-17M/C 49P |
Rem depan | Cakram | Cakram |
Rem belakang | Tromol | Cakram |
Sumber : Harian kompas
Bromo Keluarkan Asap Hitam Tanpa Letusan
By
Krizna Praztya
Gunung Bromo mengalami erupsi non-letusan atau fase erupsi efosif akibat naiknya magma ke atas permukaan.
"Erupsi efosif itu terjadi pada pukul 17.22 WIB," kata Kasubbid Pengamatan Gunung Api PVMBG Agus Budianto, Jumat (26/11/2010) malam.
Menurut dia, erupsi efosif itu berarti keluarnya magma di sekitar kawah dan untuk Bromo mungkin saja dapat meleleh hingga ke lautan pasir.
"Laporan yang kami terima mencatat fase erupsi efosif itu setinggi 600 hingga 700 meter, sehingga hanya terjadi di sekitar kawah dan tidak sampai keluar," katanya.
Namun, pihaknya akan terus memantau kecenderungan gempa vulkanik, tremor, dan konsekuensinya yang hingga kini masih cenderung fluktuatif.
Erupsi non-letusan itu dibenarkan warga Tosari, Pasuruan, Trisno Sutejo, yang rumahnya berjarak sekitar 3 kilometer dari Gunung Bromo (dari arah Pasuruan).
"Ya, saya melihat sendiri ada asap hitam tebal yang membumbung tinggi ke udara, tapi saya nggak mendengar ledakan atau melihat hujan abu," katanya.
Informasi dari sumber lain mencatat erupsi gunung api ada dua jenis yakni erupsi letusan (eksplosif) dan erupsi non-letusan (efosif).
Erupsi eksplosif adalah ledakan, sedangkan erupsi efosif adalah erupsi yang mengeluarkan material vulkanik.
Material vulkanik di Gunung Bromo adalah debu hitam (bukan lava pijar), sedangkan material vulkanik di Gunung Merapi adalah lava pijar.
Sebelumnya, Wakil Gubernur Jawa Timur Saifullah Yusuf menyatakan pihaknya telah menyiapkan sejumlah titik pengungsian bila terjadi sesuatu dan Badan Penanggulangan Bencana Daerah Jatim juga menyiapkan dana on call senilai Rp 2,5 miliar.
Sumber : Harian Kompas
"Erupsi efosif itu terjadi pada pukul 17.22 WIB," kata Kasubbid Pengamatan Gunung Api PVMBG Agus Budianto, Jumat (26/11/2010) malam.
Menurut dia, erupsi efosif itu berarti keluarnya magma di sekitar kawah dan untuk Bromo mungkin saja dapat meleleh hingga ke lautan pasir.
"Laporan yang kami terima mencatat fase erupsi efosif itu setinggi 600 hingga 700 meter, sehingga hanya terjadi di sekitar kawah dan tidak sampai keluar," katanya.
Namun, pihaknya akan terus memantau kecenderungan gempa vulkanik, tremor, dan konsekuensinya yang hingga kini masih cenderung fluktuatif.
Erupsi non-letusan itu dibenarkan warga Tosari, Pasuruan, Trisno Sutejo, yang rumahnya berjarak sekitar 3 kilometer dari Gunung Bromo (dari arah Pasuruan).
"Ya, saya melihat sendiri ada asap hitam tebal yang membumbung tinggi ke udara, tapi saya nggak mendengar ledakan atau melihat hujan abu," katanya.
Informasi dari sumber lain mencatat erupsi gunung api ada dua jenis yakni erupsi letusan (eksplosif) dan erupsi non-letusan (efosif).
Erupsi eksplosif adalah ledakan, sedangkan erupsi efosif adalah erupsi yang mengeluarkan material vulkanik.
Material vulkanik di Gunung Bromo adalah debu hitam (bukan lava pijar), sedangkan material vulkanik di Gunung Merapi adalah lava pijar.
Sebelumnya, Wakil Gubernur Jawa Timur Saifullah Yusuf menyatakan pihaknya telah menyiapkan sejumlah titik pengungsian bila terjadi sesuatu dan Badan Penanggulangan Bencana Daerah Jatim juga menyiapkan dana on call senilai Rp 2,5 miliar.
Sumber : Harian Kompas
Gran Tourismo 5
By
Krizna Praztya
Baru-baru ini Sony meluncurkan produk permainan terbarunya, Gran Turismo 5 (GT5). Permainan tersebut dikatakan akan memberikan sensasi yang menakjubkan dan mendekati riil dalam bermain mobil balap.
Dalam permainan tersebut tersedia 1.000 pilihan mobil. Semuanya itu merupakan mobil yang benar-benar nyata dan digunakan oleh para pembalap.
Beberapa jenis mobil yang tersedia adalah Mercedes-Benz SLS AMG, Volkswagen Type 2 (T1) SambaBus, dan McLaren MP4-12C. Pengalaman riil juga didukung oleh tersedianya sirkuit-sirkuit terkenal di dunia sebagai latar tempat dalam permainan. Misalnya, ada Autumn Ring Deep Forest Raceway, Grand Valley Speedway, dan Nurburging.
Saat ini, GT5 dikatakan sebagai permainan balap yang paling canggih dari yang pernah ada. Kazunori Kamauchi, Presiden Polyphony Digital Inc, mengungkapkan, GT5 merupakan proyek ambisius dengan tantangan dan kompleksitas setara dengan proyek luar angkasa Apollo.
Saat penciptaannya pada tahun 1997, permainan ini ingin memberikan latar yang sama sekali baru dalam permainan balap mobil. Di permainan GT5, pengguna juga akan diuji kemampuan membalapnya.
Jadi, tidak bisa langsung balap seperti game lainnya. Ada step-step-nya dulu, misalnya harus dapat izin untuk membalap dulu. Kalau penampilannya baik, nanti juga baru akan diberi kelengkapan mobil yang paling canggih.
Untuk harganya, permainan GT5 ini dijual dengan harga Rp 645.000. Sementara, GT5 juga dijual sepaket dengan Play Station 3 dengan harga Rp 4.844.000. Ketika membeli, pengguna akan mendapat buklet yang berisi panduan untuk bermain dan menampilkan performa yang paling baik dalam membalap.
Sumber : Harian Kompas
Dalam permainan tersebut tersedia 1.000 pilihan mobil. Semuanya itu merupakan mobil yang benar-benar nyata dan digunakan oleh para pembalap.
Beberapa jenis mobil yang tersedia adalah Mercedes-Benz SLS AMG, Volkswagen Type 2 (T1) SambaBus, dan McLaren MP4-12C. Pengalaman riil juga didukung oleh tersedianya sirkuit-sirkuit terkenal di dunia sebagai latar tempat dalam permainan. Misalnya, ada Autumn Ring Deep Forest Raceway, Grand Valley Speedway, dan Nurburging.
Saat ini, GT5 dikatakan sebagai permainan balap yang paling canggih dari yang pernah ada. Kazunori Kamauchi, Presiden Polyphony Digital Inc, mengungkapkan, GT5 merupakan proyek ambisius dengan tantangan dan kompleksitas setara dengan proyek luar angkasa Apollo.
Saat penciptaannya pada tahun 1997, permainan ini ingin memberikan latar yang sama sekali baru dalam permainan balap mobil. Di permainan GT5, pengguna juga akan diuji kemampuan membalapnya.
Jadi, tidak bisa langsung balap seperti game lainnya. Ada step-step-nya dulu, misalnya harus dapat izin untuk membalap dulu. Kalau penampilannya baik, nanti juga baru akan diberi kelengkapan mobil yang paling canggih.
Untuk harganya, permainan GT5 ini dijual dengan harga Rp 645.000. Sementara, GT5 juga dijual sepaket dengan Play Station 3 dengan harga Rp 4.844.000. Ketika membeli, pengguna akan mendapat buklet yang berisi panduan untuk bermain dan menampilkan performa yang paling baik dalam membalap.
Sumber : Harian Kompas
Langganan:
Postingan (Atom)